
Master’s Thesis Nr. 122
Systems Group, Department of Computer Science, ETH Zurich

in collaboration with

Silk.co

A Web-based Tool to Semi-automatically Import Data from Generic REST APIs

by

Mauro Bieg

Supervised by

Prof. Donald Kossmann
Sebastiaan Visser

May 2014 - November 2014

Abstract Most public Web APIs currently have no machine-readable doc-
umentation and are structurally rather diverse. Nonetheless, these APIs are
often our best bet to access the valuable information they provide in a relatively
structured manner. We introduce a tool which provides a web-based GUI to
map any JSON-based REST-like API within minutes, and subsequently access
the mapped APIs through a wrapper hypermedia API, and thus in a uniform
manner. This enables even teams with very limited resources to keep track of
dozens of Web APIs that frequently roll out new versions.

1

Acknowledgments I would like to thank both Prof. Donald Kossmann and
ETH Zürich, as well as Sebastiaan Visser and the entire Silk team, for providing
me with the opportunity to work on this interesting problem.

2

https://www.ethz.ch
https://silk.co

Source Code All the source code of our project is available under the
Apache License Version 2.0. The version as of publication can be found
under www.github.com/mb21/api-explorer/releases/tag/v0.1.0 (commit
5fb12e80a2e3c4139613b0f15565b32446e19bb7).

3

https://github.com/mb21/api-explorer/releases/tag/v0.1.0

Contents

Definitions and Abbreviations 6

Introduction 7

Background 8

REST . 8

The REST Architectural Style 8

Media Types: generic Hypermedia Format vs. custom Media Types 10

Hypermedia APIs . 11

RFC 5988: Web Linking . 12

Hypermedia Formats . 13

Interface Description Languages (IDL) 16

Inspecting public REST APIs . 17

Authentication . 18

Versioning . 18

Envelope . 18

Pagination . 18

Related Work 20

Implementation 23

Supporting Specifications . 23

Data Model of an API . 23

Accessing the Data . 26

Cached Collections . 27

Exporting data to Silk . 27

Exporting to the Swagger 2.0 IDL . 27

Evaluation 29

Test on three public APIs . 29

Comparison with SoapUI and Postman 30

Usability . 30

Using Hypermedia . 31

Further Work 32

4

Conclusion 33

Bibliography 34

5

Definitions and Abbreviations

IANA The Internet Assigned Numbers Authority is a department of ICANN
(Internet Corporation for Assigned Names and Numbers). ICANN is a
nonprofit private American corporation.

IRI Internationalized Resource Identifier as defined in RFC 3987. A IRI is
basically a URI that is not limited to ASCII.

RDF Resource Description Framework is “a framework for representing infor-
mation in the Web” (“RDF 1.1 Concepts and Abstract Syntax”). It uses
sets of subject-predicate-object triples to express the relationships between
resources, in effect forming a graph.

RFC A Request for Comments is a publication of the Internet Engineering Task
Force (IETF). Some RFCs are later adopted as Internet Standards.

RPC Remote Procedure Call is a way of invoking a service on another computer
over a network that follows the style of a local function call very closely.

URI Uniform Resource Identifier as defined in RFC 3986
URL Uniform Resource Locator as defined in RFC 3986. A URL is a URI that

does not only uniquely identify a resource, but can also be used to locate
it by dereferencing the URL.

Web API In this thesis, the term “Web API” refers to an API that is exposed
by a web server, usually via HTTP.

WSDL Web Service Description Language is an XML-based interface descrip-
tion language that is used to describe the interface of a web service, usually
used in conjunction with SOAP.

SOAP Started in 1998, SOAP is an XML-based protocol specification for
services and the messages they exchange. The model is conceptually very
similar to the remote procedure call paradigm.

UDDI Designed to integrate with SOAP, Universal Description Discovery and
Integration is an XML-based mechanism to register and locate web services.

6

https://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

Introduction

We are interested in the problem of accessing and importing the information
that is contained in the databases powering websites and public Web APIs.

The SOAP ecosystem was rich in native and machine-friendly methods to describe
and discover Web services (e.g. WSDL and UDDI respectively). However, among
public Web APIs, SOAP has been superseded by what many feel is a simpler
and leaner style of Web services: REST. The term was coined in 2000 by Roy
Fielding in his dissertation. Soon all major public Web services proclaimed to
be RESTful.

For better or worse, the current de-facto standard of a public Web service is
a REST API that talks JSON. The result is a dynamic and quickly changing
bunch of Web APIs that are broadly speaking very similar (they all support
JSON over HTTP), yet they vary widely in the crucial yet unstandardized details
(e.g. how to find related resources, what part of the JSON is envelope and what
the actual data, etc.). Furthermore, unlike SOAP services, they usually have no
machine-readable documentation. This makes it very hard to write a generic
tool to import data from a multitude of Web APIs into a user’s own database.

What is more, most public Web APIs do not follow Fielding’s criteria for a
RESTful service very closely. For example, few follow the HATEOAS principle—
i.e. do not contain links to further resources. Instead, the API client has to
rely on human-readable (i.e. non-machine-readable) documentation to know
what further resources are available under what URL. Thus this information
has to be hard-coded when the client code is written, and updated when the
server changes, introducing tight coupling between the server and the client.
Nonetheless, these REST APIs expose an unprecedented wealth of information
in an at least superficially machine-readable format. As such, Web APIs are
our best (and besides web scraping often only) way to get our hands on the
information contained in many websites.

The aim of this thesis is to build a tool with a web-based GUI to support a
user to quickly import data from generic JSON REST APIs. The target user
is possibly trained, but no computer scientist, so for example a data journalist.
The first thing the user will have to do is to enter the URL of an API entry point
into the tool. From thereon, he or she will be guided to navigate the API and
construct a declarative representation of the API. Ultimately, the user can make
use of this description by connecting to our tool’s HAL-compliant hypermedia
wrapper Web API, thus accessing the mapped APIs through a uniform interface.

7

http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

Background

REST

The REST Architectural Style

In his 2000 dissertation, Roy Thomas Fielding coined the term REST (Fielding
2000, Abstract). While often misunderstood (Fielding 2008a), his dissertation
has nonetheless been very influential. As of today, there exist an abundance of
Web APIs that claim to be RESTful, even though most of them don’t adhere to
all the criteria listed by Fielding.

In his dissertation, Fielding analyzed the architecture of the World Wide Web
and generalized it to an architectural style for network-based application software.
(“An architectural style is a named, coordinated set of architectural constraints.”)
He called the architectural style that he arrived at Representational State Trans-
fer—or REST for short.

As introduced by Fielding (Fielding 2000, Chapter 5), REST is an architectural
style where the system adheres to the constraints listed below. They are squarely
aimed at making REST suitable for Internet-scale distributed systems, which
come with a unique set of challenges such as potentially heavy load (e.g. on a
single resource), latency, and intermittent network failures.

1. There are distinct clients and servers.

2. The system implements a stateless communication protocol between the
client and the server, “such that each request from client to server must
contain all of the information necessary to understand the request, and
cannot take advantage of any stored context on the server. Session state
is therefore kept entirely on the client.” This allows servers to free up
resources, such as memory, after each request and thus communicate with
many clients simultaneously with relatively little burden placed on the
server. This is in contrast to architectural styles such as RPC which are
less suited for the Internet-scale loads.

3. The server can label responses as cacheable or non-cacheable. The client
is free to reuse the response of cacheable responses in the future instead of
sending the same request again.

4. “The central feature that distinguishes the REST architectural style from
other network-based styles is its emphasis on a uniform interface between
components”, which includes the following:

• “The key abstraction of information in REST is a resource.” Anything
that can be assigned a URL can be a resource: “a document or
image, a temporal service (e.g. ‘today’s weather in Los Angeles’), a
collection of other resources [or] a non-virtual object (e.g. a person)”.
Note that REST isn’t constrained to CRUD-style APIs: also services,
which may do a significant amount of computation on the server, can
be resources.

8

• When a URL is dereferenced, the server sends a resource represen-
tation to the client. Note that the resource representation (e.g. the
HTML or JSON describing a person or a text document) is different
from the conceptual resource itself (e.g. the person or text document).
The client ever only accesses the representation, and manipulation
of the resources is always done indirectly via the representation. By
making explicit the step of serializing the resource to send its represen-
tation over a network—instead of working with the leaky abstraction
or illusion that the client is working directly on the server’s resource—
helps deal with various scenarios, like: network errors, race conditions
when multiple clients work on the same resource on the server, and
idiosyncrasies in the serialization (and deserialization) of the resource
to (and from) its representation.
Furthermore, the serialization format or “data format of a representa-
tion is known as a media type.” HTML, JPEG, XML and JSON are
all examples of media types. The specification of the data format,
which the client has to be familiar with in advance, generically informs
the client on how to construct further operations upon receiving a re-
source representation. The media type, however, does not specify the
structure/schema of the resource itself. For details and an alternative
interpretation of Fielding’s thesis, see the next section “Media Types:
generic Hypermedia Format vs. custom Media Types”.

• HATEOAS (Hypermedia as the Engine of Application State) means
that the media type used should be a hypermedia format (i.e. it should
at least have the notion of a link) and that the client requires no
prior knowledge beyond a generic understanding of the hypermedia
format to interact with the server. Similar to how a web browser only
needs to know HTML and the URL of the homepage of a website, an
API client only has to know a supported media type and the URL
of an entry point to the API. It can then follow links to dynamically
walk the API’s resources. With each HTTP request, the state of the
application, as expressed by the client’s current URL, is changed. No
further out-of-band information, such as schemas or API descriptions,
is needed.
A hypermedia format has to define a way to construct valid state
transitions from a server response. For example, the HTML format
specifies how to construct a GET request from a link element and its
href attribute, as well as how to construct a POST request from a
form and its containing elements.
HATEOAS enables very loose coupling between the client and the
server. Also, just as a web browser can navigate every website using
HTML, generic clients can interact with all APIs that talk in a
hypermedia format supported by the client.

5. The system must be a layered system with components constrained “such
that each component cannot ‘see’ beyond the immediate layer with which
they are interacting”. This allows the clients to communicate transparently
with proxies and gateways. For example when a caching proxy is introduced,
the client can just talk to the new proxy as if it were the original server,

9

although the proxy actually passes the request on to the next layer behind
the scenes.

6. The system may use code on demand. The server may not only send
data but also code to the client where additional processing would take
place. In terms of the web, that would be JavaScript or Java applets
executed on the client.

Media Types: generic Hypermedia Format vs. custom Media Types

Media types are a central element of REST as they specify exactly how the
client and server interact. There has been a longstanding discussion on the role
of media types in REST APIs (Krishnan 2010; Tilkov 2011). While we have
come to the conclusion that the first of the two approaches listed below is both
the more practical approach, as well as the one intended by Fielding, the debate
may still interest the reader.

When designing a REST API, there are basically two options for the server to
use media types in the Content-Type header (and consequently for the client in
the Accept header):

1. Use a standard media type such as application/json or application/
hal+json.

2. Create custom media types for each kind of resource to serve as contracts
between client and server.

Unfortunately, Fielding doesn’t address this in his thesis (Fielding 2000). In a
later blog post (Fielding 2008a), he acknowledges his brevity:

To some extent, people get REST wrong because I failed to include
enough detail on media type design within my dissertation. That’s
because I ran out of time, not because I thought it was any less
important than the other aspects of REST.

But he doesn’t seem too interested in changing the state of affairs: (Fielding
2008b)

Others will try to decipher what I have written in ways that are more
direct or applicable to some practical concern of today. I probably
won’t, because I am too busy [. . .]

Consequently, he is still rather cryptic: (Fielding 2008a)

A REST API should spend almost all of its descriptive effort in
defining the media type(s) used for representing resources and driving
application state, or in defining extended relation names and/or
hypertext-enabled mark-up for existing standard media types. Any
effort spent describing what methods to use on what URIs of interest

10

should be entirely defined within the scope of the processing rules for
a media type (and, in most cases, already defined by existing media
types).
[. . .]
A REST API should be entered with no prior knowledge beyond
the initial URI (bookmark) and set of standardized media types
that are appropriate for the intended audience (i.e., expected to be
understood by any client that might use the API).

But finally, in the comments: (Fielding 2008a, emphasis added)

How many Web browsers are aware of the distinction between an
online-banking resource and a Wiki resource? None of them. They
don’t need to be aware of the resource types. What they
need to be aware of is the potential state transitions—the links and
forms—and what semantics/actions are implied by traversing those
links. A browser represents them as distinct UI controls so that a
user can see potential transitions and anticipate the effect of chosen
actions. A spider can follow them to the extent that the relationships
are known to be safe. Typed relations, specific media types, and
action-specific elements provide the guidance needed for automated
agents.

We take this to mean that Fielding doesn’t advocate the creation of custom
media types for each resource type (option 2 above), but rather the reuse of
standardized media types (option 1 above).

The upshot is that unless none of the existing hypermedia formats suffice, an
API should use a standardized hypermedia format and advertise that with a
Content-Type header such as application/hal+json, application/ld+json,
text/html or application/atom+xml. If the client knows the format, it can
then extract and construct links, as well as identify which methods are applicable
in the current context (Kumar 2009). For example when using text/html, the
browser knows how to extract links from ..., as well as
how to construct methods from <form method="POST">...</form> although
the media type doesn’t say anything about the semantics of the resources
themselves (e.g. “bank account” or “social media profile”).

Hypermedia APIs

In the context of web APIs, some people have stopped using the intimidating
term HATEOAS, and sometimes even the by now overloaded term REST, in
favour of the perhaps easier to understand term hypermedia API (Klabnik 2012).
Whatever the terminology, the point is that the media type of a REST API must
support links. Links allow a client to dynamically discover related resources.

Even though the hypermedia approach to APIs is not mainstream as of today,
a hypermedia format that is widely-used by REST APIs holds the promise of

11

generic clients, further decoupling servers from clients, as well as self-explanatory
APIs that are browsable by humans as well as machines.

While HTML is a hypermedia format, it isn’t particularly suited to building APIs
to be consumed by machines. XML in conjunction with XLink can be considered
a hypermedia format, but public APIs are shifting their focus away from XML to
JSON (“Google Trends: XML API, JSON API, SOAP API, REST API” 2014).
Of the inspected APIs, the following are already JSON-only: Facebook Graph,
Twitter, GitHub, Freebase, Google Books.

As links are usually by far the most-used state transitions, and our tool is
only going to retrieve and never submit data, we will focus our discussion of
hypermedia formats on links and mostly ignore the creation and modification of
resources.

RFC 5988: Web Linking

As explained above, links are one of the fundamental building blocks of hyper-
media APIs. In 2010, RFC 5988 (“RFC 5988: Web Linking” 2010) generalised a
concept of a link that was already found in various formats, including:

• HTML’s link header element: <link href="http://creativecommons.org/
licenses/by/4.0/" rel="license" />

• Atom’s atom:link element: <atom:link href="http://creativecommons.org/
licenses/by/4.0/" rel="license" />

• The HTTP Link header: Link: <http://creativecommons.org/
licenses/by/4.0/>; rel=license

RFC 5988 defines a general framework for typed links for the web by defining
the abstract concept of a link as:

a statement of the form “{context IRI} has a {relation type} resource
at {target IRI}, which has {target attributes}”.

The target attributes are rarely-used optional key/value pairs. The relation type,
often abbreviated with “rel”, specifies the nature of the link. The context IRI
defaults to the IRI of the requested resource. So if the three examples above
are served from http://example.com, then all three are instances of the same
abstract link:

Resource: http://example.com
Relation-type: license
Target: http://creativecommons.org/licenses/by/4.0/

The link expresses that http://example.com has the license Creative Com-
mons Attribution 4.0.

There are two types of link relation types:

12

http://www.w3.org/TR/xlink11/

• Registered relation types which are strings (such as “self”, “next” or “license”)
and must be registered and approved by IANA. The list of registered
relations can be found at a IANA page (“IANA Link Relations”).

• Extension relation types which must be valid URIs. Preferably, the URI
points to a description of the semantics of the relation type.

Using the same abstract concept of a link throughout various serialization formats
would enable the seamless integration of networks and graphs expressed in a
multitude of applications and contexts. A few that come to mind: Facebook’s
Open Graph (“The Open Graph Protocol” 2010), RDF (“RDF 1.1 Concepts and
Abstract Syntax”), hypermedia APIs, and of course the HTML-based Web.

As most public Web APIs are currently JSON-based, a serialisation of the link
concept for JSON seems vital to the future of hypermedia APIs. There are a few
different proposed ways on how to express links in JSON (Nottingham 2011).
Two of them, HAL and JSON-LD, will be introduced in the following subsection.

Hypermedia Formats

On a basic level, a hypermedia format is one that has the notion of a link, like for
example HTML. There are several JSON-based hypermedia formats available,
of which two seem to be relatively mature and have gained some traction: HAL
and JSON-LD.

HAL HAL is an IETF Draft (IETF Internet-Draft: JSON Hypertext Applica-
tion Language 2014) and a quite simple format that mainly defines a standardized
way to add two things to a JSON document:

1. links (as defined by RFC 5988)
2. embedded resources with their own links

An example HAL document (“HAL: The Hypertext Application Language” 2011):

{
"_links": {

"self": {
"href": "/orders"

},
"curies": [{

"name": "ea",
"href": "http://example.com/docs/rels/{rel}",
"templated": true

}],
"next": {

"href": "/orders?page=2"
},
"ea:find": {

"href": "/orders{?id}",

13

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://stateless.co/hal_specification.html

"templated": true
}

},
"currentlyProcessing": 14,
"shippedToday": 20,
"_embedded": {

"ea:order": [{
"_links": {

"self": { "href": "/orders/123" },
"ea:customer": { "href": "/customers/7809" }

},
"total": 30.00,
"currency": "USD"

}, {
"_links": {

"self": { "href": "/orders/124" },
"ea:customer": { "href": "/customers/12369" }

},
"total": 20.00,
"currency": "USD"

}]
}

}

HAL uses RFC 5988 for links. Therefore, custom link relation types (not only
their targets) are full-blown IRIs. To shorten those, HAL uses CURIEs (W3C
Working Group Note: CURIE Syntax 1.0 2010) that can be specified at the
reserved property at ._links.curies. In the example above, ea:find is used
to express the link relation type http://example.com/docs/rels/find. The
CURIE syntax is similar to XML Schema’s QNames. However, it doesn’t
suffer some of its shortcoming when abbreviating arbitrary URIs. For example,
isbn:0321154991 isn’t a valid QName since ‘0321154991’ is not a valid element
name (W3C Working Group Note: CURIE Syntax 1.0 2010).

HAL doesn’t have an explicit way to advertise methods other than links to
construct GET requests—i.e. no analog to forms in HTML. This means there
is no obvious way to instruct clients on how to construct POST, PUT or DELETE
request to modify resources on the server. However, it has been suggested (“HAL
Discuss Mailing List” 2013) to advertise general methods in links (e.g. with
the edit link relation type) or doing a HTTP OPTIONS request to see what
methods are available. This might work for simple methods but definitely trades
more complex interactions in favour of simplicity.

A major REST API that uses HAL in production is Amazon’s AppStream API
(“Amazon AppStream REST API” 2013). Client libraries that facilitate the
access to HAL APIs include hyperagent.js for JavaScript (Hartig 2013) and
Hyper-Resource for Ruby (Gamache 2014).

JSON-LD and Hydra JSON-LD (JSON for Linking Data) is a W3C Recom-
mendation to serialize linked data (W3C Recommendation: JSON-LD 1.0 2014).

14

http://json-ld.org

On one level, it is simply an alternative to RDF/XML, N3 or similar formats: a
serialization for RDF graphs (“RDF 1.1 Concepts and Abstract Syntax”) which
happens to be valid JSON at the same time. (Although JSON-LD also supports
native lists, JSON’s native primitive types like number and boolean, as well as
properties that are blank nodes, which makes it in fact a superset of RDF.)

On another level however, JSON-LD can be seen as a hypermedia format because
all RDF resources (except blank nodes) are identified by an IRI. “Developers and
machines are able to use this IRI (by using a web browser, for instance) to go to
the term and get a definition of what the term means. This process is known
as IRI dereferencing.” (W3C Recommendation: JSON-LD 1.0 2014, 5. Basic
Concepts) While all RDF serializations could be seen as hypermedia formats,
JSON-LD is an appealing format from the point of view of hypermedia APIs
because existing JSON APIs can be augmented to JSON-LD in a completely
backwards-compatible way.

This JSON-LD example demonstrates some of the flexibility of the format:

{
"@context": {

"foaf": "http://xmlns.com/foaf/0.1/",
"name": "foaf:name",
"knows": "foaf:knows"

},
"@id": "http://manu.com/#me",
"name": "Manu Sporny",
"foaf:homepage": "http://manu.sporny.org/",
"knows": {

"@id": "http://pete.com/#me",
"name": "Peter Muller"

}
}

Which translates to the following four RDF triples:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://manu.com/#me> foaf:homepage <http://manu.sporny.org/> .
<http://manu.com/#me> foaf:knows <http://peter.com/#me> .
<http://manu.com/#me> foaf:name "Manu Sporny" .
<http://pete.com/#me> foaf:name "Peter Muller" .

Interestingly, no one seems to have gone through the trouble of defining a
mapping from RDF (or JSON-LD) to RFC 5988 (Nottingham 2011, comment of
Manu Sporny). But a mapping from RDF (i.e. to a triple of the form subject
predicate object) is usually straightforward: the subject maps to the context
IRI, the predicate to the relation type, and the object to the target IRI. The
inverse mapping is slightly trickier since RFC 5988 may contain target attributes,
although they are rarely used. Target attributes can refer to either the link itself
or the target, and the information on which is the case is usually not available
in machine-readable form.

15

For some applications, it may be particularly interesting that JSON-LD, when
making use of the Schema.org vocabulary, is somewhat supported by Google
(“Google Webmaster Tools: Musical Artists” 2014).

Hydra (W3C Unofficial Draft: Hydra Core Vocabulary 2014; Lanthaler 2013) is
an RDF vocabulary “which enables a server to advertise valid state transitions
to a client”. A Hydra API returns JSON-LD that, in addition to the data, also
contains statements on how to interact with the API. In plain JSON-LD for
example, a client would have no choice but to blindly try to dereference the
target URIs of all properties. The hydra:Link class can be used by the server to
indicate which properties are intended to be dereferenced, i.e. which identifiers
are not only URIs but also URLs locating a resource of the API. Furthermore,
Hydra also contains vocabulary to instruct a client on how to construct POST,
DELETE and other requests.

Other Formats In recent years, quite a few hypermedia formats have been
created, some of them still quite experimental. Examples include SIREN, JSON
API and UBER. While the basic principle is very similar to HAL, the details
vary and most of the formats support more HTTP verbs than GET.

There is also a W3C Working Draft called Linked Data Platform (“Linked
Data Platform 1.0” 2014) which, similar to Hydra, defines an RDF-vocabulary
describing RESTful Web APIs. However, it is limited to CRUD and doesn’t
support describing arbitrary operations.

Time will tell which approach has the most mainstream appeal. Upon broader
adoption of any one hypermedia format, however, network effects will certainly
help making it an even more attractive choice.

Interface Description Languages (IDL)

In REST as defined by Fielding, the client shouldn’t have to rely on out-of-band
information to navigate the API (see HATEOAS above). Nonetheless, a number
of formats to describe Web APIs in a more or less machine-readable way have
been developed. Such Interface Description Languages (IDLs)—following the
spirit of WSDL and other earlier formats—usually result in a file that has to be
downloaded separately by the client (i.e. out-of-band information). Similar to
the remote procedure call paradigm (Fielding 2000, 6.5.2 HTTP is not RPC),
these IDLs are thus commonly used to generate client-side code in advance, or
to generate server-side code (i.e. stubs) and documentation.

In the last couple of years, the focus of public Web APIs has shifted away from
the XML/SOAP ecosystem to JSON and self-proclaimed RESTful APIs (Mason
2011). This has also meant the disappearance of IDL files and generic tooling
for most public Web APIs (“SoapUI: SOAP Vs. REST Challenges” 2014).

However, there are efforts to regain those. A list of IDLs, that usually come
with accompanying tooling, and are designed to work well with JSON-based
REST-like Web APIs (even though these APIs are strictly speaking usually not
REST APIs):

16

http://schema.org/
https://developers.google.com/schemas/formats/json-ld
https://support.google.com/webmasters/answer/4620133
http://www.hydra-cg.com
https://github.com/kevinswiber/siren
http://jsonapi.org/
http://jsonapi.org/
http://g.mamund.com/uber
http://www.w3.org/TR/ldp-primer/

Swagger was originally developed by Reverb (then Wordnik) but is now mostly
a community effort. It seems to be the format with the most open source
tooling and traction (Lensmar 2014). Swagger can be used in a bottom-up
approach (generating the JSON file from annotations in the server-side
code, which is usually Java) or in a declarative top-down approach (generate
server- and client-side code in a variety of languages from the JSON file).

API-Blueprint is a JSON-based format backed by Apiary and their services.
RAML is a YAML-based format backed by Mulesoft and their services.
I/O Docs is a JSON-Schema-based format backed by Mashery, mainly used to

generate documentation.
WADL and RSDL (Web Application Description Language and RESTful Ser-

vice Description Language) are both XML-based formats. Regardless of
their potential merits, they will therefore probably not gain traction in the
community around public REST-like Web APIs.

Google Discovery Document Format is a JSON-based format mainly used
internally by Google and to access Google’s various Web APIs. The Google
APIs Client Generator allows generation of Java, .NET and PHP clients.

JSON Hyper Schema is a vocabulary for JSON Schema to describe links.
This may at first sound like it’s a hypermedia format. However, JSON
Schema files are always out-of-band information and as such it resembles
rather an IDL. JSON Hyper Schema is also an IETF Draft, although it
expired August 4, 2013.

Silk’s internal format is basically a Haskell abstract data type which serves
as server-side code at the same time.

In recent years, RPC frameworks like Apache Thrift (“Thrift: Scalable Cross-
Language Services Implementation” 2007), Apache Avro (“Apache Avro”) and
Google Protocol Buffers (“Google Developers: Protocol Buffers”) have sprung up
as well. However, with their binary protocols and little consideration for security,
they are primarily meant for internal use.

Inspecting public REST APIs

As our tool has to work with basically every Web API on the public Internet,
it was important that we gained a clear understanding of the commonalities
and differences of public Web APIs. To this end, we specifically inspected the
following APIs:

• Facebook
• Flickr
• Rotten Tomatoes
• Freebase
• GitHub
• Google Books
• New York Times
• The Guardian
• Twitter

17

http://swagger.io
https://helloreverb.com/about
http://apiblueprint.org
http://apiary.io
http://raml.org
http://www.mulesoft.com
https://github.com/mashery/iodocs#quick-api-configuration-example
https://developers.google.com/discovery/v1/reference/apis
https://code.google.com/p/google-apis-client-generator/
https://code.google.com/p/google-apis-client-generator/
http://json-schema.org/latest/json-schema-hypermedia.html
http://tools.ietf.org/html/draft-zyp-json-schema
https://developers.facebook.com/docs/graph-api/reference
https://www.flickr.com/services/api/
http://developer.rottentomatoes.com/docs/read/JSON
https://developers.google.com/freebase/v1/
https://developer.github.com/v3/
https://developers.google.com/books/docs/v1/reference/
http://developer.nytimes.com/docs
http://www.theguardian.com/open-platform/getting-started
https://dev.twitter.com/docs/api/1.1

Authentication

To authenticate the client against the API provider (i.e. the server), all inspected
APIs have an option to use an API key or session token transmitted as a query
parameter. The key is usually obtained by manually registering the client
application on the website of the service. This basic authentication seems to
suffice for our prototype. In production, support for at least OAuth 2.0 would
probably be needed as some authentication tokens (e.g. Facebook’s) expire rather
quickly.

Versioning

The currently most accepted way is to put the major version number in the URL
(http://api.example.com/v2/), and have the client choose between minor
revisions by using an HTTP header, which may be a date.

Envelope

Some APIs always use an envelope, while most use one only on endpoints that
return a collection of items, for example:

{
"success": true,
"results": [

{"id": 1},
{"id": 2}

]
}

Unfortunately, the specific fields and names used vary a lot.

Pagination

Some queries to an API have hundreds if not thousands of results. To reduce
overhead and stress on both the server and client, results are therefore often
split up into pages. There are broadly speaking three approaches to pagination:

• The most common way is to have a query parameter (usually called page)
that lets the client request a page by number. This is often combined with
a parameter that specifies the number of results per page (usually called
limit or count).

• In some cases, such as Twitter (“Twitter Developers: Working with Time-
lines”), there are new results added to the front of the list very frequently.
This makes using a page query parameter an inefficient method, as for
example tweets that were on the first page get pushed down to the second
page by the time that it is requested, and are thus returned again. For
such cases, cursoring is used: a max_id query parameter (in combination

18

with count) is used to request results relative to a result with a known
ID (which is usually the last result of the previous query). Obviously, this
assumes that the results are ordered by ID.

• Finally, the Hypermedia approach is to simply use next and previous
links that leave the task of constructing the URL to the next page to
the server. While some advocate using the HTTP Link header to that
end (e.g. Link: <http://example.com/query?page=2>; rel=next), if
a dedicated Hypermedia Format is already in use, it seems preferable to
embed those links in the content.

19

Related Work

In terms of related work in the area of GUIs to work with existing REST-like
Web APIs, there exist a number of tools.

Apigee Console is a web app to easily explore the contained directory of Web
APIs. APIs are added by uploading a WADL IDL document. The GUI is
useful if there exists already an up-to-date WADL file of the API the user
is interested in, or if she knows how to create one. However, it doesn’t
help in quickly mapping APIs without a WADL description.

Figure 1: Apigee Console screenshot. As you can see, its description of the NYT
Article Search API v1 is already deprecated.

SoapUI is a desktop application used, among other things like API testing, to
create IDL documents, e.g. WSDL or Swagger files. While without doubt
very comprehensive and feature-rich, the GUI is quite intimidating and
complex. There’s also no built-in browser with immediate feedback to
discover and explore the API.

NetBeans WADL Visual Designer is similar to SoapUI but is part of the
NetBeans IDE.

Postman is a browser-based GUI to facilitate accessing and testing Web APIs.
It doesn’t, however, have the capability to build up an IDL-like representa-
tion.

Cocoa Rest Client is similar to Postman but built as a native Mac application
and is open source.

20

https://apigee.com/console/
http://www.soapui.org/Getting-Started/rest-sample-project.html
http://wiki.netbeans.org/WadlVisualDesigner
https://www.getpostman.com/
http://mmattozzi.github.io/cocoa-rest-client/

Figure 2: SoapUI screenshot

Figure 3: Postman screenshot (“Postman”)

21

Paw is a more polished but proprietary app, similar to Cocoa Rest Client.

The tools listed seem to fall into two categories: On one hand, SoapUI and
NetBeans WADL Visual Designer have complex and rather unfriendly interfaces
to create an IDL file but don’t support browsing Web APIs. On the other hand,
the other tools have user-friendly GUIs to make requests to Web APIs but don’t
allow the user to build a map of the API being explored. The GUI of our tool
aims to fill that gap.

22

https://luckymarmot.com/paw

Implementation

We built a prototype tool that demonstrates a way to let a user quickly map
any JSON-based Web API and import data from that API for local usage. In
most cases, we imagine that users will use the description they created to access
the original Web APIs through the uniform and HAL-compliant wrapper Web
API provided by our tool.

The tool consists of a web-based GUI to browse and map the Web APIs (built
using AngularJS and nginx as a proxy to escape browsers’ same-origin policy),
as well as a Node.js-based server that provides persistence using MongoDB and
a wrapper Web API to all mapped APIs. The all-JavaScript stack allows us to
share code between the server and the client. This enables a responsive GUI on
the client while the same code runs the wrapper API on the server.

Supporting Specifications

In addition to using the notion of a link as defined by RFC 5988 and as used by
HAL (both described above), our implementation also relies on two additional
specifications:

1. RFC 6570 defines URI Templates (“RFC 6570: URI Template”
2012). As an example, the URI template http://www.example.com/
foo{?query,number} in the context of the variables {"query":
"mycelium", "number": 100}, would be expanded to the URI
http://www.example.com/foo?query=mycelium&number=100.

2. JSPath (“JSPath” 2012) is a JavaScript library that implements a cus-
tom domain-specific language (DSL) to extract data from JSON docu-
ments. “JSPath for JSON is like an XPath for XML.” For example, the
JSPath expression .results[0] would extract "Marvin" from the fol-
lowing JSON: {"success": true, "results": ["Marvin", "Ford",
"Tricia", "Arthur"] }.

Data Model of an API

When mapping an API, the user is effectively creating an instance of the data
model we defined to represent an API. This model is somewhat similar to the
ones of the Interface Description Languages described above. However, its focus
is more on the dynamic generation of links at runtime, as opposed to specifying
fixed parameters beforehand.

For each API, the user has to specify the relevant Endpoints (like http://
example.com/movies/ and http://example.com/movies/{id}) and come up
with Entity Classes (like Movie). The Entity Classes serve to model the seman-
tical entities the user is ultimately interested in, and are conceptually similar to
the ones found in entity-relationship (ER) models. As such, multiple Endpoints
may share the same Entity Class (as in the Movie-example above). However,
unlike ER modelling, we don’t specify all possible fields of an Entity but instead

23

are content with having a tool that extracts a JSON blob from the Web API that
represents that Entity. This choice was made in the spirit of semi-structured
data, as well as to avoid the complexities of modeling, and writing schemas for,
nested JSON structures.

More specifically, the API description may contain the following properties for
each mapped API:

• Global properties for the whole API:

– An API ID
– Base URL: preferably an entry-point for the API, and if none exists

a prefix of all URLs of the API
– Parameters to be passed along with each request, e.g. an API key for

authentication
– A list of CURIEs to be embedded in the HAL wrapper API. Each

CURIE consists of a shorthand (e.g. ea) and a URL, containing the
string {ref}, which the shorthand will be expanded with. For exam-
ple when (ea, http://example.com/docs/rels/{rel}) is declared,
ea:parent can be used to express http://example.com/docs/rels/
parent.

• A list of Endpoints where each may have:

– An Endpoint ID
– A URI Template, i.e. a URL with optional variables
– Optional default values for the variables. For collections of Entities,

one of them can also be marked as the variable that controls pagination.
For example if the URI Template is example.com/api{?page,limit}
and page is set as the pagination variable, our tool will automatically
generate “next” (and “previous”) links that contain incremented (and
decremented) values for that variable.

– A flag specifying whether the endpoint returns only one Entity or a
collection of Entities

– A JSPath expression that specifies how to extract the Entity or the
Entities, i.e. how to unpack it from a possible envelope.

– Finally, a field specifying to which of the user-specified Entity Classes
the Entity belongs.

• A list of Entity Classes where each may have:

– An Entity Class ID
– A JSPath expression to extract the human-readable title of the Entity.
– A list of links for an Entity of that Entity Class. Each link has

to be specified by a “link relation type” (“RFC 5988: Web Linking”
2010) and a URI Template that can be expanded into a link target
when using the JSON representing that Entity as the context for the
template. The list should at least include a self-link which can be
used to update the representation of the Entity.

24

Figure 4: Screenshot of our tool

25

Accessing the Data

Upon mapping an API, the user can persist the generated API description to
the server by clicking “Save API”. The user has then three ways to access the
data from the Web API:

1. Simply click the “Download JSON” button in the GUI.
2. Click the button to export to a Swagger 2.0 file and use Swagger’s tooling

to generate a client to access the original API.
3. Access the cleaned-up and HAL-compliant wrapper API provided by the

server.

In many ways, the third option is the most interesting one. The wrapper API uses
the API description stored on the server and provides a transparent intermediate
layer that transforms every properly mapped API into a hypermedia API, with
the advantages outlined in the previous chapter.

We decided to have the wrapper API return HAL-compliant JSON. The other
hypermedia format we looked at more closely above is JSON-LD. But HAL’s
simplistic way of adding a _links property that contains explicit links with
RFC 5988 link relation types (like self, next or alternate) that many existing
APIs already use, as well as the fact that we only need to handle GET methods,
made HAL a more natural choice for this application. We evaluated using JSON
that is both HAL and JSON-LD compliant, but unfortunately, that doesn’t seem
possible without duplicating almost all the linking data because HAL requires
the _links wrapper object while JSON-LD interprets each nesting as a relation.

The wrapper API can be explored with a HAL browser (e.g. “HAL-Browser”
2014) from /api/ (i.e. http://localhost:3000/api/). But generally the URL
will follow the pattern /api/{apiId}/{endpointId}/{url}, where {apiId}
and {endpointId} are the IDs chosen by the user when describing the API as
mentioned above, and {url} can be an explicit URL of the remote API. All
three parameters may be optional. Some ways to use the wrapper API:

• /api/{apiId}/{endpointId}/ – get the URL specified for that Endpoint
(using the default variables) and return JSON containing the results in the
_embedded['ns:results'] array.

• /api/{apiId}/{endpointId}/?key1=val&key2=val2 – same as above
but variables in the URI Template are specified to override the default
values. The variable names are advertised in _links['ns:template'].

• /api/{apiId}/_/{url} – just get the specified URL but with the advan-
tage of having the global parameters (like e.g. API key) filled in.

• /api/{apiId}/{endpointId}/{url} – get that url and process results
according to the Endpoint description.

The {url} variants are mainly used by the GUI tool to facilitate the browsing
of APIs that are not completely mapped yet.

26

Cached Collections

Public Web APIs usually don’t expose a sophisticated query language, like SQL,
which would allow a client to access all the resources she is interested in within
one query. This may be to limit server load, as well as to exert some control
over what kind of applications people build on top of the API.

This has the result that, for example, to fetch information from Rotten Tomatoes
on a list of your favourite movies, the client has to make one HTTP request
for each movie (except if all your movies fall into one of the categories directly
exposed by the API, like “movies currently opening in the cinema”).

To solve such use cases, we’ve decided to amend our tool with a collection of
cached Entities. For each Entity Class there is a collection, each being backed
by a MongoDB collection on the server. The user can click on “Save to Cache”
in the GUI to persist the JSON of that Entity. This allows quick retrieval of
all cached Entities by simply fetching /api/{apiId}/!{entityClassId}/, or
a single Entity through /api/{apiId}/!{entityClassId}/{entityId} where
{entityId} is either the _id or id property if the former is undefined. The
cached Entities can easily be modified by the graphical JSON editor, as well as
updated from the GUI. Updates are fetched from the original self-link, which
is now stored in _links.origin since _links.self now refers to the cached
Entity.

Exporting data to Silk

Once a user has mapped a Web API with our tool, she’s ready to reap the fruits.

Silk is a web-based platform to manage “structured and unstructured online
content as easy-to-search collections of web pages and visualisations”. Disclaimer:
this thesis was written in collaboration with Silk.

To demonstrate the usefulness of our prototype, we implemented a simple module
that lets a user export an Entity or all Entities of a collection (cached or not)
with one click. It exports them to Silk by posting to Silk’s “JSON importer”
Web API (“Silk Partners”).

Exporting to the Swagger 2.0 IDL

In the Interface Description Languages section, we evaluated the most common
IDLs for JSON REST-like Web APIs, and concluded that the Swagger format
has currently the most traction across ecosystems and vendors. We therefore
decided to allow the user to export the generated API description to a Swagger
file. Since version 2.0 of the spec has just been released (“Swagger 2.0 Spec”
2014), we decided to target 2.0, with the expectation that most of the tooling
available for the Swagger 1.x format will soon be updated for 2.0. This will enable
users to automatically generate client and server-side stubs and human-readable
documentation in a uniform look and feel for all APIs mapped with our tool.

The mapping from our internal API description format to Swagger is relatively
straight-forward, since Swagger also contains a list of Endpoints at its core.

27

However, our Entity Classes have no suitable analogue and are therefore not
exported.

Similar to RFC 6570’s URI Templates, Swagger’s URL paths may also contain
curly braces to include variables. Unfortunately, the Swagger creators have chosen
not to support RFC 6570 for now (Ratovsky 2014). This has the consequence
that there may be some inconsistencies when exporting from our RFC 6570-
based format to Swagger. In a related issue, the Swagger spec provides the
following choices when specifying where a variable/parameter occurs: “query”,
“header”, “path”, “formData” or “body”. Since all our variables are encoded in
the URI Template, we always use “path”. However, this has the consequence
that we are required by the spec to always specify the parameter as required:
true although the parameter would not always be required if the template were
expanded according to RFC 6570.

Finally, there were some issues around how the specification enforced (and
prohibited) slashes at the beginning and end of certain URL segments. After a
short discussion on the Swagger mailing list (Ratovsky 2014), we could convince
the authors to tweak the specification to be clear and accommodate our use case.

28

Evaluation

Test on three public APIs

We tested the prototype on the three following, relatively diverse, public Web
APIs:

1. The Facebook Graph API (v2.1) is a Web API that serves as a good
representation for the majority of widely-used REST-like APIs currently
on the web. While it doesn’t provide links in the JSON representations
returned, the documentation explains how to construct them. For example,
if we are at https://graph.facebook.com/{id} where {id} is the ID of
a Facebook user, we can use our GUI to easily construct the link friends
that will take us to https://graph.facebook.com/{id}/friends, which
in turn contains a list of users with their IDs. For each of those we can
construct a self-link to https://graph.facebook.com/{id}.
A minor quirk of the Facebook Graph API is that all different kinds
of basic resources are at graph.facebook.com/{id}, instead of e.g.
graph.facebook.com/user/{id} and graph.facebook.com/event/
{id}. However, this poses no problem to our tool.

2. The Flickr API serves as an example of an RPC-style API where always the
same URL path is used but the resource is selected with the method query
parameter. For example, to search Flickr for cat pictures, this cumbersome
scheme is the way to do it:

https://api.flickr.com/services/rest/?method=flickr.photos.search
&format=json&nojsoncallback=1&text=cat

3. The Rotten Tomatoes API (v1.0) is almost a hypermedia API. While it
doesn’t use a well-defined media type (in fact, the Content-Type header
is text/javascript), the JSON objects returned contain HAL-like links
objects.

These three APIs seem to cover a reasonably broad spectrum of currently online
public Web APIs. As such, we were pleased to see that mapping them with our
tool was quite straightforward and fast.

Our choice of modelling Entity Classes separately from Endpoints especially
paid off in the Facebook and Rotten Tomatoes API, as various endpoints return
the same kind of User and Movie objects respectively, thus speeding up the
mapping of the APIs considerably. However, in the case of the Flickr API, which
unfortunately uses slightly different JSON representations for the same photo on
different endpoints (e.g. flickr.photos.search vs. flickr.photos.getInfo),
this choice turned out to have the downside that not all link definitions worked
on entities returned by all endpoints. Of course, while kind of defeating the
purpose, this could be avoided by creating a new photo Entity Class for each
endpoint.

29

https://developers.facebook.com/docs/graph-api/reference
https://www.flickr.com/services/api/
http://developer.rottentomatoes.com/

Comparison with SoapUI and Postman

In terms of GUIs that allow the user to create a representation of an existing API,
SoapUI and Postman seem the two pieces of software that are most comparable
to our tool.

However, as can be seen in the table below, while the feature-set is overlapping,
it is not the same. Our tool does not provide much specific help in testing
APIs, while SoapUI and Postman do. On the other hand, our tool provides a
uniform wrapper API while SoapUI and Postman don’t. Also, SoapUI provides a
larger number of features in comparison to Postman and our tool, which explains
SoapUI’s complex GUI at least to a limited extent.

Our tool SoapUI Postman

Test APIs x x
Support for OAuth x x
Model endpoints with parameters x x x
Model global parameters for all endpoints x partial
Model EntityClasses x
Model links between resources x
Serve wrapper API x
Export to Swagger file x x
Export to WADL x
Support for JSON APIs x x x
Support for XML APIs x x
Inspect raw HTTP requests * x *

* with the browser’s developer tools

As will be discussed in the section Further Work, exporting to WADL, adding
support for OAuth (or even XML-based APIs if so desired) could be added to
our tool.

Usability

All in all, we are very satisfied with the relative ease and pleasantness with which
the rather complex task of mapping every possible JSON API, and retrieving all
the data it offers, can be accomplished with our GUI tool. A mapping of the
couple of endpoints a user is interested in for any given API can be achieved
within minutes and is immediately useful—deployment is as easy as clicking the
“Save API” button.

We considered using the KLM-GOMS model (Kieras 1993) to compare the time
it would take a user to perform various actions in the GUI in our tool and in
SoapUI. However, we found there was very little overlap in directly comparable
tasks. The advantage of our GUI lies in its relative simplicity, discoverability
of operations, and tightly integrating the exploring and mapping of Web APIs
unknown to the user. These are all things GOMS models are not well suited to
measure.

30

http://www.getpostman.com/docs/environments

Using Hypermedia

By using HAL, a standardized hypermedia format, our wrapper API can be
embedded seamlessly in a wider ecosystem of hypermedia APIs within an or-
ganization. In many cases, clients don’t need to be recompiled, or otherwise
updated, as they can dynamically follow the links to find the entities mapped by
the user. Apparently, our tool is the first designed to access existing Web APIs
as if they were hypermedia APIs (Amundsen 2014).

We made the conscious decision to not model the JSON schema but stop drilling
down when we have arrived at a JSON blob that represents an individual
semantic entity. For example, once we have a JSON object representing a Movie,
we don’t force or let the use specify that the title field contains a string and
the release field a date. Avoiding the nitty-gritty of the semantic and format
of each field reduces the complexity of our tool considerably. This simplistic
model works especially well when the client isn’t interested in the exact schema
of the data anyhow. As for example in Silk’s use-case of accessing the wrapper
API with a generic client to simply import all resources exposed by the API
into their own schema-less database without worrying about types, and exact
response format.

31

Further Work

Our basic prototype demonstrates the usefulness of the approach chosen. How-
ever, it could obviously be expanded to include support for OAuth, export to
more IDL formats like WADL and offer wrapper APIs in more hypermedia
formats. Support for XML-based Web APIs could be added, but seems not to
be a primary concern since the tooling for traditional XML APIs is already very
strong while Hypermedia APIs tend to not support XML anyway.

Also, currently we only support fetching data through HTTP GETs. But in
principle, the GUI could be extended to support other HTTP verbs such as
POST, PUT and DELETE, and the wrapper API would expose those in a
suitable hypermedia formats to not only enable downloading, but also uploading
compatible entities.

32

Conclusion

Most public Web APIs currently have no machine-readable documentation: they
neither have an IDL file (Interface Description Language, like e.g. WSDL), nor
are they proper REST APIs as defined by Fielding when he coined the term—
i.e. they don’t include enough in-band information either. This makes it very
hard to write a generic tool to import data from a multitude of Web APIs into
a user’s own database. Without resorting to writing and maintaining a separate
client for each of them, that is.

Our tool helps in taming the various JSON-based REST-like APIs out there. It
consists of two closely integrated parts.

• Client-side: a web-based GUI to navigate and map any kind of JSON-based
Web API. The user is able to easily build up an IDL-like representation of
the API within minutes.

• Server-side: a HAL-compliant hypermedia wrapper Web API which uses
the user-created representations to expose the mapped APIs through a
uniform interface—something that to our knowledge hasn’t been done
before.

The representation of the APIs can also be exported to the Swagger 2.0 IDL
format. However, the preferred way is to access our wrapper Web API. Because
it relies on HAL, a standardized hypermedia format, generic clients can be used
to access our API and follow its links dynamically, needing little or no updates
when the API changes.

In terms of the GUI, we feel that we have achieved a reasonable compromise
between simplicity and the complexity that comes with genericness. A user is
able to model virtually all JSON-based Web APIs, while having still an interface
that is by far less complex than the most comparable tool: SoapUI.

Our tool allows users to map upstream APIs in minutes. Changes are reflected
instantly in the wrapper API. The client doesn’t need to be changed or updated
at all. Suddenly, it is feasible, even for teams with very limited resources, to
keep track of dozens of APIs that frequently roll out new versions.

33

Bibliography

“Amazon AppStream REST API.” 2013. http://docs.aws.amazon.com/
appstream/latest/developerguide/rest-api.html (Visited on July 4, 2014).

Amundsen, Mike. 2014. “Mike Amundsen on Twitter About Hypermedia Wrap-
per APIs.” https://twitter.com/mamund/status/512266361369018368 (Visited
on October 28, 2014).

“Apache Avro.” http://avro.apache.org/docs/current/ (Visited on October 2,
2014).

Fielding, Roy Thomas. 2000. “Architectural Styles and the Design of
Network-Based Software Architectures.” http://www.ics.uci.edu/~fielding/
pubs/dissertation/rest_arch_style.htm (Visited on June 20, 2014).

———. 2008a. “Untangled: REST APIs Must Be Hypertext-Driven.” http:
//roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven (Visited on
June 20, 2014).

———. 2008b. “Untangled: Specialization.” http://roy.gbiv.com/untangled/
2008/specialization (Visited on June 20, 2014).

Gamache, Pete. 2014. “Pragmatic Hypermedia: Creating a Generic, Self-Inflating
API Client for Production Use.” http://petegamache.com/wsrest2014-gamache.
pdf (Visited on October 3, 2014).

“Google Developers: Protocol Buffers.” https://developers.google.com/protocol-
buffers/ (Visited on October 2, 2014).

“Google Trends: XML API, JSON API, SOAP API, REST API.” 2014.
http://www.google.com/trends/explore#q=xml%20api%2C%20json%20api%
2C%20soap%20api%2C%20rest%20api (Visited on October 22, 2014).

“Google Webmaster Tools: Musical Artists.” 2014. https://support.google.com/
webmasters/answer/4620133 (Visited on November 4, 2014).

“HAL Discuss Mailing List.” 2013. https://groups.google.com/forum/#!topic/
hal-discuss/kqiF3EdobTU (Visited on July 4, 2014).

“HAL-Browser.” 2014. https://github.com/mikekelly/hal-browser (Visited on
September 16, 2014).

“HAL: The Hypertext Application Language.” 2011. http://stateless.co/hal_
specification.html (Visited on July 4, 2014).

Hartig, Pascal. 2013. “Hyperagent.js.” http://weluse.github.io/hyperagent/
(Visited on October 3, 2014).

“IANA Link Relations.” http://www.iana.org/assignments/link-relations/link-
relations.xhtml (Visited on October 29, 2014).

IETF Internet-Draft: JSON Hypertext Application Language. 2014. http://tools.
ietf.org/html/draft-kelly-json-hal-06 (Visited on July 4, 2014).

“JSPath.” 2012. https://github.com/dfilatov/jspath (Visited on September 1,
2014).

Kieras, David. 1993. “Using the Keystroke-Level Model to Estimate Execution

34

http://docs.aws.amazon.com/appstream/latest/developerguide/rest-api.html
http://docs.aws.amazon.com/appstream/latest/developerguide/rest-api.html
https://twitter.com/mamund/status/512266361369018368
http://avro.apache.org/docs/current/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/specialization
http://roy.gbiv.com/untangled/2008/specialization
http://petegamache.com/wsrest2014-gamache.pdf
http://petegamache.com/wsrest2014-gamache.pdf
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.google.com/trends/explore#q=xml%20api%2C%20json%20api%2C%20soap%20api%2C%20rest%20api
http://www.google.com/trends/explore#q=xml%20api%2C%20json%20api%2C%20soap%20api%2C%20rest%20api
https://support.google.com/webmasters/answer/4620133
https://support.google.com/webmasters/answer/4620133
https://groups.google.com/forum/#!topic/hal-discuss/kqiF3EdobTU
https://groups.google.com/forum/#!topic/hal-discuss/kqiF3EdobTU
https://github.com/mikekelly/hal-browser
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html
http://weluse.github.io/hyperagent/
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://tools.ietf.org/html/draft-kelly-json-hal-06
http://tools.ietf.org/html/draft-kelly-json-hal-06
https://github.com/dfilatov/jspath

Times.” http://courses.wccnet.edu/~jwithrow/docs/klm.pdf (Visited on October
8, 2014).

Klabnik, Steve. 2012. “REST Is over!” http://blog.steveklabnik.com/posts/
2012-02-23-rest-is-over (Visited on June 27, 2014).

Krishnan, Dilip. 2010. “Is Proliferation of Custom Media Types RESTFul?”
http://www.infoq.com/news/2010/01/subbu-custom-media-types (Visited on
June 20, 2014).

Kumar, Suresh. 2009. “Stack Overflow: REST Media Type Explosion, An-
swer #1112986.” http://stackoverflow.com/questions/880881/rest-media-type-
explosion/1112986#1112986 (Visited on June 20, 2014).

Lanthaler, Markus. 2013. “Hydra: A Vocabulary for Hypermedia-Driven
Web APIs.” http://www.markus-lanthaler.com/research/hydra-a-vocabulary-
for-hypermedia-driven-web-apis.pdf (Visited on July 7, 2014).

Lensmar, Ole. 2014. “Another API-Blueprint, RAML and Swagger
Comparison.” http://www.slideshare.net/SmartBear_Software/api-strat-
2014metadataformatsshort (Visited on September 9, 2014).

“Linked Data Platform 1.0.” 2014. http://www.w3.org/TR/ldp/ (Visited on
September 15, 2014).

Mason, Ross. 2011. “How REST Replaced SOAP on the Web.” http://www.
infoq.com/articles/rest-soap (Visited on October 22, 2014).

Nottingham, Mark. 2011. “Linking in JSON.” https://www.mnot.net/blog/
2011/11/25/linking_in_json (Visited on June 20, 2014).

“Postman.” http://www.getpostman.com (Visited on November 4, 2014).

Ratovsky, Ron. 2014. “Swagger Google Groups: What’s the Status of Swagger
2.0.” https://groups.google.com/forum/#!msg/swagger-swaggersocket/YMx_
NeT_9aA/ujfpP1Yyjs0J (Visited on September 9, 2014).

“RDF 1.1 Concepts and Abstract Syntax.” http://www.w3.org/TR/rdf11-
concepts/ (Visited on October 29, 2014).

“RFC 5988: Web Linking.” 2010. http://tools.ietf.org/html/rfc5988 (Visited on
September 2, 2014).

“RFC 6570: URI Template.” 2012. http://tools.ietf.org/html/rfc6570 (Visited
on September 1, 2014).

“Silk Partners.” http://partners.silk.co/ (Visited on November 4, 2014).

“SoapUI: SOAP Vs. REST Challenges.” 2014. http://www.soapui.org/The-
World-Of-API-Testing/soap-vs-rest-challenges.html (Visited on October 22,
2014).

“Swagger 2.0 Spec.” 2014. https://github.com/wordnik/swagger-spec/blob/
master/versions/2.0.md (Visited on September 9, 2014).

“The Open Graph Protocol.” 2010. http://ogp.me/ (Visited on October 29,
2014).

“Thrift: Scalable Cross-Language Services Implementation.” 2007. https://thrift.

35

http://courses.wccnet.edu/~jwithrow/docs/klm.pdf
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://blog.steveklabnik.com/posts/2012-02-23-rest-is-over
http://www.infoq.com/news/2010/01/subbu-custom-media-types
http://stackoverflow.com/questions/880881/rest-media-type-explosion/1112986#1112986
http://stackoverflow.com/questions/880881/rest-media-type-explosion/1112986#1112986
http://www.markus-lanthaler.com/research/hydra-a-vocabulary-for-hypermedia-driven-web-apis.pdf
http://www.markus-lanthaler.com/research/hydra-a-vocabulary-for-hypermedia-driven-web-apis.pdf
http://www.slideshare.net/SmartBear_Software/api-strat-2014metadataformatsshort
http://www.slideshare.net/SmartBear_Software/api-strat-2014metadataformatsshort
http://www.w3.org/TR/ldp/
http://www.infoq.com/articles/rest-soap
http://www.infoq.com/articles/rest-soap
https://www.mnot.net/blog/2011/11/25/linking_in_json
https://www.mnot.net/blog/2011/11/25/linking_in_json
http://www.getpostman.com
https://groups.google.com/forum/#!msg/swagger-swaggersocket/YMx_NeT_9aA/ujfpP1Yyjs0J
https://groups.google.com/forum/#!msg/swagger-swaggersocket/YMx_NeT_9aA/ujfpP1Yyjs0J
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://tools.ietf.org/html/rfc5988
http://tools.ietf.org/html/rfc6570
http://partners.silk.co/
http://www.soapui.org/The-World-Of-API-Testing/soap-vs-rest-challenges.html
http://www.soapui.org/The-World-Of-API-Testing/soap-vs-rest-challenges.html
https://github.com/wordnik/swagger-spec/blob/master/versions/2.0.md
https://github.com/wordnik/swagger-spec/blob/master/versions/2.0.md
http://ogp.me/
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf

apache.org/static/files/thrift-20070401.pdf (Visited on October 2, 2014).

Tilkov, Stefan. 2011. “Media Types in RESTful HTTP.” http://www.innoq.
com/blog/st/2011/12/media-types/ (Visited on June 20, 2014).

“Twitter Developers: Working with Timelines.” https://dev.twitter.com/rest/
public/timelines (Visited on October 8, 2014).

W3C Recommendation: JSON-LD 1.0. 2014. http://www.w3.org/TR/json-ld/
(Visited on July 2, 2014).

W3C Unofficial Draft: Hydra Core Vocabulary. 2014. http://www.hydra-cg.
com/spec/latest/core/ (Visited on July 2, 2014).

W3C Working Group Note: CURIE Syntax 1.0. 2010. http://www.w3.org/TR/
2010/NOTE-curie-20101216/ (Visited on July 4, 2014).

36

https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
http://www.innoq.com/blog/st/2011/12/media-types/
http://www.innoq.com/blog/st/2011/12/media-types/
https://dev.twitter.com/rest/public/timelines
https://dev.twitter.com/rest/public/timelines
http://www.w3.org/TR/json-ld/
http://www.hydra-cg.com/spec/latest/core/
http://www.hydra-cg.com/spec/latest/core/
http://www.w3.org/TR/2010/NOTE-curie-20101216/
http://www.w3.org/TR/2010/NOTE-curie-20101216/

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

A Web-based Tool to Semi-automatically Import Data from Generic REST APIs

Bieg Mauro Dario

Zürich, November 6, 2014

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf

	Definitions and Abbreviations
	Introduction
	Background
	REST
	The REST Architectural Style
	Media Types: generic Hypermedia Format vs. custom Media Types
	Hypermedia APIs
	RFC 5988: Web Linking
	Hypermedia Formats

	Interface Description Languages (IDL)
	Inspecting public REST APIs
	Authentication
	Versioning
	Envelope
	Pagination

	Related Work
	Implementation
	Supporting Specifications
	Data Model of an API
	Accessing the Data
	Cached Collections
	Exporting data to Silk
	Exporting to the Swagger 2.0 IDL

	Evaluation
	Test on three public APIs
	Comparison with SoapUI and Postman
	Usability
	Using Hypermedia

	Further Work
	Conclusion
	Bibliography

